research

On the Riesz potential and its commutators on generalized Orlicz-Morrey spaces

Abstract

We consider generalized Orlicz-Morrey spaces M_{\Phi,\varphi}(\Rn) including their weak versions WM_{\Phi,\varphi}(\Rn). In these spaces we prove the boundedness of the Riesz potential from M_{\Phi,\varphi_1}(\Rn) to M_{\Psi,\varphi_2}(\Rn) and from M_{\Phi,\varphi_1}(\Rn) to WM_{\Psi,\varphi_2}(\Rn). As applications of those results, the boundedness of the commutators of the Riesz potential on generalized Orlicz-Morrey space is also obtained. In all the cases the conditions for the boundedness are given either in terms of Zygmund-type integral inequalities on (φ1,φ2)(\varphi_{1},\varphi_{2}), which do not assume any assumption on monotonicity of φ1(x,r)\varphi_{1}(x,r), φ2(x,r)\varphi_{2}(x,r) in r.Comment: 23 pages. J. Funct. Spaces Appl.(to appear

    Similar works