In this article we address the computational hardness of optimally decoding a
quantum stabilizer code. Much like classical linear codes, errors are detected
by measuring certain check operators which yield an error syndrome, and the
decoding problem consists of determining the most likely recovery given the
syndrome. The corresponding classical problem is known to be NP-complete, and a
similar decoding problem for quantum codes is also known to be NP-complete.
However, this decoding strategy is not optimal in the quantum setting as it
does not take into account error degeneracy, which causes distinct errors to
have the same effect on the code. Here, we show that optimal decoding of
stabilizer codes is computationally much harder than optimal decoding of
classical linear codes, it is #P