Classical time series models have serious difficulties in modeling and
forecasting the enormous fluctuations of electricity spot prices. Markov regime
switch models belong to the most often used models in the electricity
literature. These models try to capture the fluctuations of electricity spot
prices by using different regimes, each with its own mean and covariance
structure. Usually one regime is dedicated to moderate prices and another is
dedicated to high prices. However, these models show poor performance and there
is no theoretical justification for this kind of classification. The merit
order model, the most important micro-economic pricing model for electricity
spot prices, however, suggests a continuum of mean levels with a functional
dependence on electricity demand. We propose a new statistical perspective on
modeling and forecasting electricity spot prices that accounts for the merit
order model. In a first step, the functional relation between electricity spot
prices and electricity demand is modeled by daily price-demand functions. In a
second step, we parameterize the series of daily price-demand functions using a
functional factor model. The power of this new perspective is demonstrated by a
forecast study that compares our functional factor model with two established
classical time series models as well as two alternative functional data models.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS652 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org