research

Finite Ball Intersection Property of the Urysohn Universal Space

Abstract

In a paper published posthumously, P.S. Urysohn constructed a complete, separable metric space that contains an isometric copy of every complete separable metric space, nowadays referred to as the Urysohn universal space. Here we study various convexity properties of the Urysohn universal space and show that it has a finite ball intersection property. We also note that Urysohn universal space is not hyperconvex

    Similar works

    Full text

    thumbnail-image

    Available Versions