research

Loop Calculus for Non-Binary Alphabets using Concepts from Information Geometry

Abstract

The Bethe approximation is a well-known approximation of the partition function used in statistical physics. Recently, an equality relating the partition function and its Bethe approximation was obtained for graphical models with binary variables by Chertkov and Chernyak. In this equality, the multiplicative error in the Bethe approximation is represented as a weighted sum over all generalized loops in the graphical model. In this paper, the equality is generalized to graphical models with non-binary alphabet using concepts from information geometry.Comment: 18 pages, 4 figures, submitted to IEEE Trans. Inf. Theor

    Similar works

    Full text

    thumbnail-image

    Available Versions