In this article we prove the continuity of the deterministic function
u:[0,T]×Dˉ→R, defined by
u(t,x):=Ytt,x, where the process (Yst,x)s∈[t,T] is given
by the generalized multivalued backward stochastic differential equation:
\begin{equation*} \left\{ \begin{array}{l} -dY_{s}^{t,x}+\partial
\varphi(Y_{s}^{t,x})ds+\partial\psi(Y_{s}^{t,x})dA_{s}^{t,x}\ni
f(s,X_{s}^{t,x},Y_{s}^{t,x})ds \\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+g(s,X_{s}^{t,x},Y_{s}^{t,x})dA_{s}^{t,x}-Z_{s}^{t,x}dW_{s}~,\;t\leq
s < T, \\ {Y_{T}=h(X_{T}^{t,x}).} \end{array} \right. \end{equation*} The
process (Xst,x,Ast,x)s≥t is the solution of a stochastic
differential equation with reflecting boundary conditions.Comment: Some proofs have been slighty change