We present the results of the measurements of the detection efficiency for a
4.7 \r{A} neutron beam incident upon a detector incorporating a stack of up to
five MultiWire Proportional Counters (MWPC) with Boron-coated cathodes. The
cathodes were made of Aluminum and had a surface exhibiting millimeter-deep
V-shaped grooves of 45{\deg}, upon which the thin Boron film was deposited by
DC magnetron sputtering. The incident neutrons interacting with the converter
layer deposited on the sidewalls of the grooves have a higher capture
probability, owing to the larger effective absorption film thickness. This
leads to a higher overall detection efficiency for the grooved cathode when
compared to a cathode with a flat surface. Both the experimental results and
the predictions of the GEANT4 model suggests that a 5-counter detector stack
with coated grooved cathodes has the same efficiency as a 7-counter stack with
flat cathodes. The reduction in the number of counters in the stack without
altering the detection efficiency will prove highly beneficial for large-area
position-sensitive detectors for neutron scattering applications, for which the
cost-effective manufacturing of the detector and associated readout electronics
is an important objective. The proposed detector concept could be a
technological option for one of the new chopper spectrometers and other
instruments planned to be built at the future European Spallation Source in
Sweden. These results with macrostructured cathodes generally apply not just to
MWPCs but to other gaseous detectors as well.Comment: 14 pages, 9 figure