Physics and information are intimately connected, and the ultimate
information processing devices will be those that harness the principles of
quantum mechanics. Many physical systems have been identified as candidates for
quantum information processing, but none of them are immune from errors. The
challenge remains to find a path from the experiments of today to a reliable
and scalable quantum computer. Here, we develop an architecture based on a
simple module comprising an optical cavity containing a single
negatively-charged nitrogen vacancy centre in diamond. Modules are connected by
photons propagating in a fiber-optical network and collectively used to
generate a topological cluster state, a robust substrate for quantum
information processing. In principle, all processes in the architecture can be
deterministic, but current limitations lead to processes that are probabilistic
but heralded. We find that the architecture enables large-scale quantum
information processing with existing technology.Comment: 24 pages, 14 Figures. Comment welcom