We present a detailed analysis of high-resolution, high S/N spectra for 5
Aquarius stream stars observed with the MIKE spectrograph on the Magellan Clay
telescope. Our sample represents one third of the 15 known members in the
stream. We find the stream is not mono-metallic: the metallicity ranges from
[Fe/H] = -0.63 to -1.58. No anti-correlation in Na-O abundances is present, and
we find a strong positive Mg-Al relationship, similar to that observed in the
thick disk. We find no evidence that the stream is a result of a disrupted
classical globular cluster, contrary to a previously published claim. High
[(Na, Ni, alpha)/Fe] and low [Ba/Y] abundance ratios in the stream suggests it
is not a tidal tail from a disrupted dwarf galaxy, either. The stream is
chemically indistinguishable from Milky Way field stars with the exception of
one candidate, C222531-145437. From its position, velocity, and detailed
chemical abundances, C222531-145437 is likely a star that was tidally disrupted
from omega-Centauri. We propose the Aquarius stream is Galactic in origin, and
could be the result from a disk-satellite perturbation in the Milky Way thick
disk on the order of a few Gyr ago: derived orbits, UVW velocities, and angular
momenta of the Aquarius members offer qualitative support for our hypothesis.
Assuming C222531-145437 is a tidally disrupted member of omega-Centauri, this
system is the most likely disk perturber. In the absence of compelling chemical
and/or dynamical evidence that the Aquarius stream is the tidal tail of a
disrupted satellite, we advocate the "Aquarius group" as a more appropriate
description. Like the Canis Major over-density, as well as the Hercules and
Monoceros groups, the Aquarius group joins the list of kinematically-identified
substructures that are not actually accreted material: they are simply part of
the rich complexity of the Milky Way structure.Comment: Accepted to MNRAS. Updated to journal versio