When considering a graph problem from a parameterized point of view, the
parameter chosen is often the size of an optimal solution of this problem (the
"standard" parameter). A natural subject for investigation is what happens when
we parameterize such a problem by various other parameters, some of which may
be the values of optimal solutions to different problems. Such research is
known as parameterized ecology. In this paper, we investigate seven natural
vertex problems, along with their respective parameters: the size of a maximum
independent set, the size of a minimum vertex cover, the size of a maximum
clique, the chromatic number, the size of a minimum dominating set, the size of
a minimum independent dominating set and the size of a minimum feedback vertex
set. We study the parameterized complexity of each of these problems with
respect to the standard parameter of the others.Comment: 17 page