The mirror (or bipartite complement) mir(B) of a bipartite graph B=(X,Y,E)
has the same color classes X and Y as B, and two vertices x in X and y in Y are
adjacent in mir(B) if and only if xy is not in E. A bipartite graph is chordal
bipartite if none of its induced subgraphs is a chordless cycle with at least
six vertices. In this paper, we deal with chordal bipartite graphs whose mirror
is chordal bipartite as well; we call these graphs auto-chordal bipartite
graphs (ACB graphs for short). We describe the relationship to some known graph
classes such as interval and strongly chordal graphs and we present several
characterizations of ACB graphs. We show that ACB graphs have unbounded
Dilworth number, and we characterize ACB graphs with Dilworth number k