A large set of stars observed by CoRoT and Kepler shows clear evidence for
the presence of a stellar background, which is interpreted to arise from
surface convection, i.e., granulation. These observations show that the
characteristic time-scale (tau_eff) and the root-mean-square (rms) brightness
fluctuations (sigma) associated with the granulation scale as a function of the
peak frequency (nu_max) of the solar-like oscillations. We aim at providing a
theoretical background to the observed scaling relations based on a model
developed in the companion paper. We computed for each 3D model the theoretical
power density spectrum (PDS) associated with the granulation as seen in
disk-integrated intensity on the basis of the theoretical model. For each PDS
we derived tau_eff and sigma and compared these theoretical values with the
theoretical scaling relations derived from the theoretical model and the Kepler
measurements. We derive theoretical scaling relations for tau_eff and sigma,
which show the same dependence on nu_max as the observed scaling relations. In
addition, we show that these quantities also scale as a function of the
turbulent Mach number (Ma) estimated at the photosphere. The theoretical
scaling relations for tau_eff and sigma match the observations well on a global
scale. Our modelling provides additional theoretical support for the observed
variations of sigma and tau_eff with nu_m max. It also highlights the important
role of Ma in controlling the properties of the stellar granulation. However,
the observations made with Kepler on a wide variety of stars cannot confirm the
dependence of our scaling relations on Ma. Measurements of the granulation
background and detections of solar-like oscillations in a statistically
sufficient number of cool dwarf stars will be required for confirming the
dependence of the theoretical scaling relations with Ma.Comment: 12 pages, 6 figures,accepted for publication in A&