Gamma-ray bursts are the most luminous explosions that we can witness in the
Universe. Studying the most extreme cases of these phenomena allows us to
constrain the limits for the progenitor models. In this Letter, we study the
prompt emission, afterglow, and host galaxy of GRB 120624B, one of the
brightest GRBs detected by Fermi, to derive the energetics of the event and
characterise the host galaxy in which it was produced. Following the
high-energy detection we conducted a multi-wavelength follow-up campaign,
including near-infrared imaging from HAWKI/VLT, optical from OSIRIS/GTC, X-ray
observations from the Chandra X-ray Observatory and at
sub-millimetre/millimetre wavelengths from SMA. Optical/nIR spectroscopy was
performed with X-shooter/VLT. We detect the X-ray and nIR afterglow of the
burst and determine a redshift of z = 2.1974 +/- 0.0002 through the
identification of emission lines of [OII], [OIII] and H-alpha from the host
galaxy of the GRB. This implies an energy release of Eiso = (3.0+/-0.2)x10^54
erg, amongst the most luminous ever detected. The observations of the afterglow
indicate high obscuration with AV > 1.5. The host galaxy is compact, with R1/2
< 1.6 kpc, but luminous, at L ~ 1.5 L* and has a star formation rate of 91 +/-
6 Msol/yr as derived from H-alpha. As other highly obscured GRBs, GRB 120624B
is hosted by a luminous galaxy, which we also proof to be compact, with a very
intense star formation. It is one of the most luminous host galaxies associated
with a GRB, showing that the host galaxies of long GRBs are not always blue
dwarf galaxies, as previously thought.Comment: 6 pages, 4 figures, 4 tables; accepted for publication in A&