research

From BGP to RTT and Beyond: Matching BGP Routing Changes and Network Delay Variations with an Eye on Traceroute Paths

Abstract

Many organizations have the mission of assessing the quality of broadband access services offered by Internet Service Providers (ISPs). They deploy network probes that periodically perform network measures towards selected Internet services. By analyzing the data collected by the probes it is often possible to gain a reasonable estimate of the bandwidth made available by the ISP. However, it is much more difficult to use such data to explain who is responsible of the fluctuations of other network qualities. This is especially true for latency, that is fundamental for several nowadays network services. On the other hand, there are many publicly accessible BGP routers that collect the history of routing changes and that are good candidates to be used for understanding if latency fluctuations depend on interdomain routing. In this paper we provide a methodology that, given a probe that is located inside the network of an ISP and that executes latency measures and given a set of publicly accessible BGP routers located inside the same ISP, decides which routers are best candidates (if any) for studying the relationship between variations of network performance recorded by the probe and interdomain routing changes. We validate the methodology with experimental studies based on data gathered by the RIPE NCC, an organization that is well-known to be independent and that publishes both BGP data within the Routing Information Service (RIS) and probe measurement data within the Atlas project

    Similar works