Fiore and Hur recently introduced a conservative extension of universal
algebra and equational logic from first to second order. Second-order universal
algebra and second-order equational logic respectively provide a model theory
and a formal deductive system for languages with variable binding and
parameterised metavariables. This work completes the foundations of the subject
from the viewpoint of categorical algebra. Specifically, the paper introduces
the notion of second-order algebraic theory and develops its basic theory. Two
categorical equivalences are established: at the syntactic level, that of
second-order equational presentations and second-order algebraic theories; at
the semantic level, that of second-order algebras and second-order functorial
models. Our development includes a mathematical definition of syntactic
translation between second-order equational presentations. This gives the first
formalisation of notions such as encodings and transforms in the context of
languages with variable binding