We performed a kinematical analysis of the [CII] line emission of the BR
1202-0725 system at z~4,7 using ALMA observations. The most prominent sources
of this system are a quasar and a submillimeter galaxy, separated by a
projected distance of about 24 kpc and characterized by very high SFR, higher
than 1000 Msun/yr. However, the ALMA observations reveal that these galaxies
apparently have undisturbed rotating disks, which is at variance with the
commonly accepted scenario in which strong star formation activity is induced
by a major merger. We also detected faint components which, after spectral
deblending, were spatially resolved from the main QSO and SMG emissions. The
relative velocities and positions of these components are compatible with
orbital motions within the gravitational potentials generated by the QSO host
galaxy and the SMG, suggesting that they are smaller galaxies in interaction or
gas clouds in accretion flows of tidal streams. We did not find any clear
spectral evidence for outflows caused by AGN or stellar feedback. This suggests
that the high star formation rates might be induced by interactions or minor
mergers with these companions, which do not affect the large-scale kinematics
of the disks, however. Our kinematical analysis also indicates that the QSO and
the SMG have similar Mdyn, mostly in the form of molecular gas, and that the
QSO host galaxy and the SMG are seen close to face-on with slightly different
disk inclinations: the QSO host galaxy is seen almost face-on (i~15), while the
SMG is seen at higher inclinations (i~25). Finally, the ratio between the black
hole mass of the QSO, obtained from XShooter spectroscopy, and the Mdyn of the
host galaxy is similar to value found in very massive local galaxies,
suggesting that the evolution of black hole galaxy relations is probably better
studied with dynamical than with stellar host galaxy masses.Comment: Accepted for publication in Astronomy and Astrophysic