The notion of entropy appears in many fields and this paper is a survey about
entropies in several branches of Mathematics. We are mainly concerned with the
topological and the algebraic entropy in the context of continuous
endomorphisms of locally compact groups, paying special attention to the case
of compact and discrete groups respectively. The basic properties of these
entropies, as well as many examples, are recalled. Also new entropy functions
are proposed, as well as generalizations of several known definitions and
results. Furthermore we give some connections with other topics in Mathematics
as Mahler measure and Lehmer Problem from Number Theory, and the growth rate of
groups and Milnor Problem from Geometric Group Theory. Most of the results are
covered by complete proofs or references to appropriate sources