research

L2-invariants of nonuniform lattices in semisimple Lie groups

Abstract

We compute L2-invariants of certain nonuniform lattices in semisimple Lie groups by means of the Borel-Serre compactification of arithmetically defined locally symmetric spaces. The main results give new estimates for Novikov-Shubin numbers and vanishing L2-torsion for lattices in groups with even deficiency. We discuss applications to Gromov's Zero-in-the-Spectrum Conjecture as well as to a proportionality conjecture for the L2-torsion of measure equivalent groups.Comment: 35 pages, 2 figure

    Similar works