research

Towards Fractional Gradient Elasticity

Abstract

An extension of gradient elasticity through the inclusion of spatial derivatives of fractional order to describe power-law type of non-locality is discussed. Two phenomenological possibilities are explored. The first is based on the Caputo fractional derivatives in one-dimension. The second involves the Riesz fractional derivative in three-dimensions. Explicit solutions of the corresponding fractional differential equations are obtained in both cases. In the first case it is shown that stress equilibrium in a Caputo elastic bar requires the existence of a non-zero internal body force to equilibrate it. In the second case, it is shown that in a Riesz type gradient elastic continuum under the action of a point load, the displacement may or may not be singular depending on the order of the fractional derivative assumed.Comment: 10 pages, LaTe

    Similar works

    Full text

    thumbnail-image