Consider a gambler and a prophet who observe a sequence of independent,
non-negative numbers. The gambler sees the numbers one-by-one whereas the
prophet sees the entire sequence at once. The goal of both is to decide on
fractions of each number they want to keep so as to maximize the weighted
fractional sum of the numbers chosen.
The classic result of Krengel and Sucheston (1977-78) asserts that if both
the gambler and the prophet can pick one number, then the gambler can do at
least half as well as the prophet. Recently, Kleinberg and Weinberg (2012) have
generalized this result to settings where the numbers that can be chosen are
subject to a matroid constraint.
In this note we go one step further and show that the bound carries over to
settings where the fractions that can be chosen are subject to a polymatroid
constraint. This bound is tight as it is already tight for the simple setting
where the gambler and the prophet can pick only one number. An interesting
application of our result is in mechanism design, where it leads to improved
results for various problems