This paper extends the fibrational approach to induction and coinduction
pioneered by Hermida and Jacobs, and developed by the current authors, in two
key directions. First, we present a dual to the sound induction rule for
inductive types that we developed previously. That is, we present a sound
coinduction rule for any data type arising as the carrier of the final
coalgebra of a functor, thus relaxing Hermida and Jacobs' restriction to
polynomial functors. To achieve this we introduce the notion of a quotient
category with equality (QCE) that i) abstracts the standard notion of a
fibration of relations constructed from a given fibration; and ii) plays a role
in the theory of coinduction dual to that played by a comprehension category
with unit (CCU) in the theory of induction. Secondly, we show that inductive
and coinductive indexed types also admit sound induction and coinduction rules.
Indexed data types often arise as carriers of initial algebras and final
coalgebras of functors on slice categories, so we give sufficient conditions
under which we can construct, from a CCU (QCE) U:E \rightarrow B, a fibration
with base B/I that models indexing by I and is also a CCU (resp., QCE). We
finish the paper by considering the more general case of sound induction and
coinduction rules for indexed data types when the indexing is itself given by a
fibration