research

Boolean algebras and Lubell functions

Abstract

Let 2[n]2^{[n]} denote the power set of [n]:={1,2,...,n}[n]:=\{1,2,..., n\}. A collection \B\subset 2^{[n]} forms a dd-dimensional {\em Boolean algebra} if there exist pairwise disjoint sets X0,X1,...,XdβŠ†[n]X_0, X_1,..., X_d \subseteq [n], all non-empty with perhaps the exception of X0X_0, so that \B={X_0\cup \bigcup_{i\in I} X_i\colon I\subseteq [d]}. Let b(n,d)b(n,d) be the maximum cardinality of a family \F\subset 2^X that does not contain a dd-dimensional Boolean algebra. Gunderson, R\"odl, and Sidorenko proved that b(n,d)≀cdnβˆ’1/2dβ‹…2nb(n,d) \leq c_d n^{-1/2^d} \cdot 2^n where cd=10d2βˆ’21βˆ’dddβˆ’2βˆ’dc_d= 10^d 2^{-2^{1-d}}d^{d-2^{-d}}. In this paper, we use the Lubell function as a new measurement for large families instead of cardinality. The Lubell value of a family of sets \F with \F\subseteq \tsupn is defined by h_n(\F):=\sum_{F\in \F}1/{{n\choose |F|}}. We prove the following Tur\'an type theorem. If \F\subseteq 2^{[n]} contains no dd-dimensional Boolean algebra, then h_n(\F)\leq 2(n+1)^{1-2^{1-d}} for sufficiently large nn. This results implies b(n,d)≀Cnβˆ’1/2dβ‹…2nb(n,d) \leq C n^{-1/2^d} \cdot 2^n, where CC is an absolute constant independent of nn and dd. As a consequence, we improve several Ramsey-type bounds on Boolean algebras. We also prove a canonical Ramsey theorem for Boolean algebras.Comment: 10 page

    Similar works

    Full text

    thumbnail-image

    Available Versions