research

Bacterial chemotaxis without gradient-sensing

Abstract

Models for chemotaxis are based on gradient sensing of individual organisms. The key contribution of Keller and Segel is showing that erratic movements of individuals may result in an accurate chemotaxis phenomenon as a group. In this paper we provide another option to understand chemotactic behavior when individuals do not sense the gradient of chemical concentration by any means. We show that, if individuals increase their motility to find food when they are hungry, an accurate chemotactic behavior may obtained without sensing the gradient. Such a random dispersal has been suggested by Cho and Kim and is called starvation driven diffusion. This model is surprisingly similar to the original derivation of Keller-Segel model. A comprehensive picture of traveling band and front solutions is provided with numerical simulations.Comment: 19 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions