Taking a rigorous formal approach, we consider sequential decision problems
involving observable variables, unobservable variables, and action variables.
We can typically assume the property of extended stability, which allows
identification (by means of G-computation) of the consequence of a specified
treatment strategy if the unobserved variables are, in fact, observed - but not
generally otherwise. However, under certain additional special conditions we
can infer simple stability (or sequential ignorability), which supports
G-computation based on the observed variables alone. One such additional
condition is sequential randomization, where the unobserved variables
essentially behave as random noise in their effects on the actions. Another is
sequential irrelevance, where the unobserved variables do not influence future
observed variables. In the latter case, to deduce sequential ignorability in
full generality requires additional positivity conditions. We show here that
these positivity conditions are not required when all variables are discrete.Comment: 25 pages, 5 figures, 1 tabl