research

On the spectral distribution of large weighted random regular graphs

Abstract

McKay proved that the limiting spectral measures of the ensembles of dd-regular graphs with NN vertices converge to Kesten's measure as Nβ†’βˆžN\to\infty. In this paper we explore the case of weighted graphs. More precisely, given a large dd-regular graph we assign random weights, drawn from some distribution W\mathcal{W}, to its edges. We study the relationship between W\mathcal{W} and the associated limiting spectral distribution obtained by averaging over the weighted graphs. Among other results, we establish the existence of a unique `eigendistribution', i.e., a weight distribution W\mathcal{W} such that the associated limiting spectral distribution is a rescaling of W\mathcal{W}. Initial investigations suggested that the eigendistribution was the semi-circle distribution, which by Wigner's Law is the limiting spectral measure for real symmetric matrices. We prove this is not the case, though the deviation between the eigendistribution and the semi-circular density is small (the first seven moments agree, and the difference in each higher moment is O(1/d2)O(1/d^2)). Our analysis uses combinatorial results about closed acyclic walks in large trees, which may be of independent interest.Comment: Version 1.0, 19 page

    Similar works

    Full text

    thumbnail-image

    Available Versions