research

A fixed-point approximation for a routing model in equilibrium

Abstract

We use a method of Luczak (arXiv:1212.3231) to investigate the equilibrium distribution of a dynamic routing model on a network. In this model, there are nn nodes, each pair joined by a link of capacity CC. For each pair of nodes, calls arrive for this pair of endpoints as a Poisson process with rate λ\lambda. A call for endpoints {u,v}\{u,v\} is routed directly onto the link between the two nodes if there is spare capacity; otherwise dd two-link paths between uu and vv are considered, and the call is routed along a path with lowest maximum load, if possible. The duration of each call is an exponential random variable with unit mean. In the case d=1d=1, it was suggested by Gibbens, Hunt and Kelly in 1990 that the equilibrium of this process is related to the fixed points of a certain equation. We show that this is indeed the case, for every d1d \ge 1, provided the arrival rate λ\lambda is either sufficiently small or sufficiently large. In either regime, we show that the equation has a unique fixed point, and that, in equilibrium, for each jj, the proportion of links at each node with load jj is strongly concentrated around the jjth coordinate of the fixed point.Comment: 33 page

    Similar works

    Full text

    thumbnail-image

    Available Versions