research

Froissart Bound on Total Cross-section without Unknown Constants

Abstract

We determine the scale of the logarithm in the Froissart bound on total cross-sections using absolute bounds on the D-wave below threshold for ππ\pi\pi scattering. E.g. for π0π0\pi^0 \pi^0 scattering we show that for c.m. energy s\sqrt{s}\rightarrow \infty , σˉtot(s,)ssdsσtot(s)/s2π(mπ)2[ln(s/s0)+(1/2)lnln(s/s0)+1]2\bar{\sigma}_{tot}(s,\infty)\equiv s\int_{s} ^{\infty} ds'\sigma_{tot}(s')/s'^2 \leq \pi (m_{\pi})^{-2} [\ln (s/s_0)+(1/2)\ln \ln (s/s_0) +1]^2 where mπ2/s0=17ππ/2m_\pi^2/s_0= 17\pi \sqrt{\pi/2} .Comment: 6 page

    Similar works