research

On the approximation of turbulent fluid flows by the Navier-Stokes-α\alpha equations on bounded domains

Abstract

The Navier-Stokes-α\alpha equations belong to the family of LES (Large Eddy Simulation) models whose fundamental idea is to capture the influence of the small scales on the large ones without computing all the whole range present in the flow. The constant α\alpha is a regime flow parameter that has the dimension of the smallest scale being resolvable by the model. Hence, when α=0\alpha=0, one recovers the classical Navier-Stokes equations for a flow of viscous, incompressible, Newtonian fluids. Furthermore, the Navier-Stokes-α\alpha equations can also be interpreted as a regularization of the Navier-Stokes equations, where α\alpha stands for the regularization parameter. In this paper we first present the Navier-Stokes-α\alpha equations on bounded domains with no-slip boundary conditions by means of the Leray regularization using the Helmholtz operator. Then we study the problem of relating the behavior of the Galerkin approximations for the Navier-Stokes-α\alpha equations to that of the solutions of the Navier-Stokes equations on bounded domains with no-slip boundary conditions. The Galerkin method is undertaken by using the eigenfunctions associated with the Stokes operator. We will derive local- and global-in-time error estimates measured in terms of the regime parameter α\alpha and the eigenvalues. In particular, in order to obtain global-in-time error estimates, we will work with the concept of stability for solutions of the Navier-Stokes equations in terms of the L2L^2 norm

    Similar works

    Full text

    thumbnail-image

    Available Versions