research

Almost Kaehler Ricci Flows and Einstein and Lagrange-Finsler Structures on Lie Algebroids

Abstract

In this work we investigate Ricci flows of almost Kaehler structures on Lie algebroids when the fundamental geometric objects are completely determined by (semi) Riemannian metrics, or effective) regular generating Lagrange/ Finsler, functions. There are constructed canonical almost symplectic connections for which the geometric flows can be represented as gradient ones and characterized by nonholonomic deformations of Grigory Perelman's functionals. The first goal of this paper is to define such thermodynamical type values and derive almost K\"ahler - Ricci geometric evolution equations. The second goal is to study how fixed Lie algebroid, i.e. Ricci soliton, configurations can be constructed for Riemannian manifolds and/or (co) tangent bundles endowed with nonholonomic distributions modelling (generalized) Einstein or Finsler - Cartan spaces. Finally, there are provided some examples of generic off-diagonal solutions for Lie algebroid type Ricci solitons and (effective) Einstein and Lagrange-Finsler algebroids.Comment: This version is accepted by Mediterranian J. Math. and modified following editor/referee's requests. File latex2e 11pt generates 29 page

    Similar works

    Full text

    thumbnail-image

    Available Versions