We describe a superconducting-circuit lattice design for the implementation
and simulation of dynamical lattice gauge theories. We illustrate our proposal
by analyzing a one-dimensional U(1) quantum-link model, where superconducting
qubits play the role of matter fields on the lattice sites and the gauge fields
are represented by two coupled microwave resonators on each link between
neighboring sites. A detailed analysis of a minimal experimental protocol for
probing the physics related to string breaking effects shows that despite the
presence of decoherence in these systems, distinctive phenomena from
condensed-matter and high-energy physics can be visualized with
state-of-the-art technology in small superconducting-circuit arrays