Time-implicit schemes are attractive since they allow numerical time steps
that are much larger than those permitted by the Courant-Friedrich-Lewy
criterion characterizing time-explicit methods. This advantage comes, however,
with a cost: the solution of a system of nonlinear equations is required at
each time step. In this work, the nonlinear system results from the
discretization of the hydrodynamical equations with the Crank-Nicholson scheme.
We compare the cost of different methods, based on Newton-Raphson iterations,
to solve this nonlinear system, and benchmark their performances against
time-explicit schemes. Since our general scientific objective is to model
stellar interiors, we use as test cases two realistic models for the convective
envelope of a red giant and a young Sun. Focusing on 2D simulations, we show
that the best performances are obtained with the quasi-Newton method proposed
by Broyden. Another important concern is the accuracy of implicit calculations.
Based on the study of an idealized problem, namely the advection of a single
vortex by a uniform flow, we show that there are two aspects: i) the nonlinear
solver has to be accurate enough to resolve the truncation error of the
numerical discretization, and ii) the time step has be small enough to resolve
the advection of eddies. We show that with these two conditions fulfilled, our
implicit methods exhibit similar accuracy to time-explicit schemes, which have
lower values for the time step and higher computational costs. Finally, we
discuss in the conclusion the applicability of these methods to fully implicit
3D calculations.Comment: Accepted for publication in A&