research

Theory of the Room-Temperature QHE in Graphene

Abstract

The unusual quantum Hall effect (QHE) in graphene is often discussed in terms of Dirac fermions moving with a linear dispersion relation. The same phenomenon will be explained in terms of the more traditional composite bosons, which move with a linear dispersion relation. The "electron" (wave packet) moves easier in the direction [1,1,0,c-axis] = [1,1,0] of the honeycomb lattice than perpendicular to it, while the "hole" moves easier in [0,0,1]. Since "electrons" and "holes" move in different channels, the number densities can be high especially when the Fermi surface has "necks". The strong QHE arises from the phonon exchange attraction in the neighborhood of the "neck" Fermi surfaces. The plateau observed for the Hall conductivity and the accompanied resistivity drop is due to the Bose-Einstein condensation of the c-bosons, each forming from a pair of one-electron--two-fluxons c-fermions by phonon-exchange attraction.Comment: 12 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:1304.763

    Similar works

    Full text

    thumbnail-image

    Available Versions