research

On/Off Macrocells and Load Balancing in Heterogeneous Cellular Networks

Abstract

The rate distribution in heterogeneous networks (HetNets) greatly benefits from load balancing, by which mobile users are pushed onto lightly-loaded small cells despite the resulting loss in SINR. This offloading can be made more aggressive and robust if the macrocells leave a fraction of time/frequency resource blank, which reduces the interference to the offloaded users. We investigate the joint optimization of this technique - referred to in 3GPP as enhanced intercell interference coordination (eICIC) via almost blank subframes (ABSs) - with offloading in this paper. Although the joint cell association and blank resource (BR) problem is nominally combinatorial, by allowing users to associate with multiple base stations (BSs), the problem becomes convex, and upper bounds the performance versus a binary association. We show both theoretically and through simulation that the optimal solution of the relaxed problem still results in an association that is mostly binary. The optimal association differs significantly when the macrocell is on or off; in particular the offloading can be much more aggressive when the resource is left blank by macro BSs. Further, we observe that jointly optimizing the offloading with BR is important. The rate gain for cell edge users (the worst 3-10%) is very large - on the order of 5-10x - versus a naive association strategy without macrocell blanking

    Similar works

    Full text

    thumbnail-image

    Available Versions