research

From quasimodes to resonances: exponentially decaying perturbations

Abstract

We consider self-adjoint operators of black-box type which are exponentially close to the free Laplacian near infinity, and prove an exponential bound for the resolvent in a strip away from resonances. Here the resonances are defined as poles of the meromorphic continuation of the resolvent between appropriate exponentially weighted spaces. We then use a local version of the maximum principle to prove that any cluster of real quasimodes generates at least as many resonances, with multiplicity, rapidly converging to the quasimodes

    Similar works

    Full text

    thumbnail-image

    Available Versions