We have explored different methods of improving the accuracy of a Naive Bayes
classifier for sentiment analysis. We observed that a combination of methods
like negation handling, word n-grams and feature selection by mutual
information results in a significant improvement in accuracy. This implies that
a highly accurate and fast sentiment classifier can be built using a simple
Naive Bayes model that has linear training and testing time complexities. We
achieved an accuracy of 88.80% on the popular IMDB movie reviews dataset.Comment: 8 pages, 2 figure