The parameters of temporal models, such as dynamic Bayesian networks, may be
modelled in a Bayesian context as static or atemporal variables that influence
transition probabilities at every time step. Particle filters fail for models
that include such variables, while methods that use Gibbs sampling of parameter
variables may incur a per-sample cost that grows linearly with the length of
the observation sequence. Storvik devised a method for incremental computation
of exact sufficient statistics that, for some cases, reduces the per-sample
cost to a constant. In this paper, we demonstrate a connection between
Storvik's filter and a Kalman filter in parameter space and establish more
general conditions under which Storvik's filter works. Drawing on an analogy to
the extended Kalman filter, we develop and analyze, both theoretically and
experimentally, a Taylor approximation to the parameter posterior that allows
Storvik's method to be applied to a broader class of models. Our experiments on
both synthetic examples and real applications show improvement over existing
methods