N/AModern computer architectures use features which often com-plicate the WCET analysis of real-time software. Alterna-tive time-predictable designs, and in particular caches, thus are gaining more and more interest. A recently proposed stack cache, for instance, avoids the need for the analysis of complex cache states. Instead, only the occupancy level of the cache has to be determined. The memory transfers generated by the standard stack cache are not generally aligned. These unaligned accesses risk to introduce complexity to the otherwise simple WCET analysis. In this work, we investigate three different ap-proaches to handle the alignment problem in the stack cache: (1) unaligned transfers, (2) alignment through compiler-gen-erated padding, (3) a novel hardware extension ensuring the alignment of all transfers. Simulation results show that our hardware extension offers a good compromise between average-case performance and analysis complexity