In this paper we introduce a statistical inference framework for estimating
the contagion source from a partially observed contagion spreading process on
an arbitrary network structure. The framework is based on a maximum likelihood
estimation of a partial epidemic realization and involves large scale
simulation of contagion spreading processes from the set of potential source
locations. We present a number of different likelihood estimators that are used
to determine the conditional probabilities associated to observing partial
epidemic realization with particular source location candidates. This
statistical inference framework is also applicable for arbitrary compartment
contagion spreading processes on networks. We compare estimation accuracy of
these approaches in a number of computational experiments performed with the
SIR (susceptible-infected-recovered), SI (susceptible-infected) and ISS
(ignorant-spreading-stifler) contagion spreading models on synthetic and
real-world complex networks