research

A block Hankel generalized confluent Vandermonde matrix

Abstract

Vandermonde matrices are well known. They have a number of interesting properties and play a role in (Lagrange) interpolation problems, partial fraction expansions, and finding solutions to linear ordinary differential equations, to mention just a few applications. Usually, one takes these matrices square, qΓ—qq\times q say, in which case the ii-th column is given by u(zi)u(z_i), where we write u(z)=(1,z,...,zqβˆ’1)⊀u(z)=(1,z,...,z^{q-1})^\top. If all the ziz_i (i=1,...,qi=1,...,q) are different, the Vandermonde matrix is non-singular, otherwise not. The latter case obviously takes place when all ziz_i are the same, zz say, in which case one could speak of a confluent Vandermonde matrix. Non-singularity is obtained if one considers the matrix V(z)V(z) whose ii-th column (i=1,...,qi=1,...,q) is given by the (iβˆ’1)(i-1)-th derivative u(iβˆ’1)(z)⊀u^{(i-1)}(z)^\top. We will consider generalizations of the confluent Vandermonde matrix V(z)V(z) by considering matrices obtained by using as building blocks the matrices M(z)=u(z)w(z)M(z)=u(z)w(z), with u(z)u(z) as above and w(z)=(1,z,...,zrβˆ’1)w(z)=(1,z,...,z^{r-1}), together with its derivatives M(k)(z)M^{(k)}(z). Specifically, we will look at matrices whose ijij-th block is given by M(i+j)(z)M^{(i+j)}(z), where the indices i,ji,j by convention have initial value zero. These in general non-square matrices exhibit a block-Hankel structure. We will answer a number of elementary questions for this matrix. What is the rank? What is the null-space? Can the latter be parametrized in a simple way? Does it depend on zz? What are left or right inverses? It turns out that answers can be obtained by factorizing the matrix into a product of other matrix polynomials having a simple structure. The answers depend on the size of the matrix M(z)M(z) and the number of derivatives M(k)(z)M^{(k)}(z) that is involved. The results are obtained by mostly elementary methods, no specific knowledge of the theory of matrix polynomials is needed

    Similar works