We report the quench cooling experiments performed with liquid O2 under
different levels of gravity simulated with the magnetic gravity compensation. A
copper disk is quenched from 270K to 90K. It is found that the cooling time in
microgravity is very long in comparison with any other gravity level. This
phenomenon is explained by the isolation effect of the gas surrounding the
disk. The liquid subcooling is shown to drastically improuve the heat exchange
thus reducing the cooling time (about 20 times). The effect of subcooling on
the heat transfer is analyzed at different gravity levels. It is shown that
such type of experiments cannot be used for the analysis of the critical heat
flux (CHF) of the boiling crisis. The minimum heat flux (MHF) of boiling is
analyzed instead