research

Unions of Onions: Preprocessing Imprecise Points for Fast Onion Decomposition

Abstract

Let D\mathcal{D} be a set of nn pairwise disjoint unit disks in the plane. We describe how to build a data structure for D\mathcal{D} so that for any point set PP containing exactly one point from each disk, we can quickly find the onion decomposition (convex layers) of PP. Our data structure can be built in O(nlogn)O(n \log n) time and has linear size. Given PP, we can find its onion decomposition in O(nlogk)O(n \log k) time, where kk is the number of layers. We also provide a matching lower bound. Our solution is based on a recursive space decomposition, combined with a fast algorithm to compute the union of two disjoint onionComment: 10 pages, 5 figures; a preliminary version appeared at WADS 201

    Similar works

    Full text

    thumbnail-image