The aim of this paper is to study the singular solutions to fractional
elliptic equations with absorption \left\{\arraycolsep=1pt
\begin{array}{lll} (-\Delta)^\alpha u+|u|^{p-1}u=0,\quad &
\rm{in}\quad\Omega\setminus\{0\},\\[2mm] u=0,\quad & \rm{in}\quad
\R^N\setminus\Omega,\\[2mm] \lim_{x\to 0}u(x)=+\infty, \end{array} \right.
where p>0, Ω is an open, bounded and smooth domain of RN(N≥2)
with 0∈Ω. We analyze the existence, nonexistence, uniqueness and
asymptotic behavior of the solutions