research

Using \D-operators to construct orthogonal polynomials satisfying higher order difference or differential equations

Abstract

We introduce the concept of \D-operators associated to a sequence of polynomials (pn)n(p_n)_n and an algebra \A of operators acting in the linear space of polynomials. In this paper, we show that this concept is a powerful tool to generate families of orthogonal polynomials which are eigenfunctions of a higher order difference or differential operator. Indeed, given a classical discrete family (pn)n(p_n)_n of orthogonal polynomials (Charlier, Meixner, Krawtchouk or Hahn), we form a new sequence of polynomials (qn)n(q_n)_n by considering a linear combination of two consecutive pnp_n: qn=pn+βnpn1q_n=p_n+\beta_np_{n-1}, \beta_n\in \RR. Using the concept of \D-operator, we determine the structure of the sequence (βn)n(\beta_n)_n in order that the polynomials (qn)n(q_n)_n are common eigenfunctions of a higher order difference operator. In addition, we generate sequences (βn)n(\beta_n)_n for which the polynomials (qn)n(q_n)_n are also orthogonal with respect to a measure. The same approach is applied to the classical families of Laguerre and Jacobi polynomials.Comment: 43 page

    Similar works

    Full text

    thumbnail-image

    Available Versions