research

Interpreting motion and force for narrow-band intermodulation atomic force microscopy

Abstract

Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear tip-surface force by measurement of the mixing of multiple tones in a frequency comb. A high QQ cantilever resonance and a suitable drive comb will result in tip motion described by a narrow-band frequency comb. We show by a separation of time scales, that such motion is equivalent to rapid oscillations at the cantilever resonance with a slow amplitude and phase or frequency modulation. With this time domain perspective we analyze single oscillation cycles in ImAFM to extract the Fourier components of the tip-surface force that are in-phase with tip motion (FIF_I) and quadrature to the motion (FQF_Q). Traditionally, these force components have been considered as a function of the static probe height only. Here we show that FIF_I and FQF_Q actually depend on both static probe height and oscillation amplitude. We demonstrate on simulated data how to reconstruct the amplitude dependence of FIF_I and FQF_Q from a single ImAFM measurement. Furthermore, we introduce ImAFM approach measurements with which we reconstruct the full amplitude and probe height dependence of the force components FIF_I and FQF_Q, providing deeper insight into the tip-surface interaction. We demonstrate the capabilities of ImAFM approach measurements on a polystyrene polymer surface.Comment: 12 pages, 7 figure

    Similar works

    Full text

    thumbnail-image