The perfect transmission in graphene monolayer and the perfect reflection in
Bernal graphene bilayer for electrons incident in the normal direction of a
potential barrier are viewed as two incarnations of the Klein paradox. Here we
show a new and unique incarnation of the Klein paradox. Owing to the different
chiralities of the quasiparticles involved, the chiral fermions in twisted
graphene bilayer shows adjustable probability of chiral tunnelling for normal
incidence: they can be changed from perfect tunnelling to partial/perfect
reflection, or vice versa, by controlling either the height of the barrier or
the incident energy. As well as addressing basic physics about how the chiral
fermions with different chiralities tunnel through a barrier, our results
provide a facile route to tune the electronic properties of the twisted
graphene bilayer.Comment: 4 figure