research

Operator pencil passing through a given operator

Abstract

Let Δ\Delta be a linear differential operator acting on the space of densities of a given weight \lo on a manifold MM. One can consider a pencil of operators \hPi(\Delta)=\{\Delta_\l\} passing through the operator Δ\Delta such that any \Delta_\l is a linear differential operator acting on densities of weight \l. This pencil can be identified with a linear differential operator \hD acting on the algebra of densities of all weights. The existence of an invariant scalar product in the algebra of densities implies a natural decomposition of operators, i.e. pencils of self-adjoint and anti-self-adjoint operators. We study lifting maps that are on one hand equivariant with respect to divergenceless vector fields, and, on the other hand, with values in self-adjoint or anti-self-adjoint operators. In particular we analyze the relation between these two concepts, and apply it to the study of \diff(M)-equivariant liftings. Finally we briefly consider the case of liftings equivariant with respect to the algebra of projective transformations and describe all regular self-adjoint and anti-self-adjoint liftings.Comment: 32 pages, LaTeX fil

    Similar works