research

Asymptotic parabolicity for strongly damped wave equations

Abstract

For SS a positive selfadjoint operator on a Hilbert space, d2udt(t)+2F(S)dudt(t)+S2u(t)=0 \frac{d^2u}{dt}(t) + 2 F(S)\frac{du}{dt}(t) + S^2u(t)=0 describes a class of wave equations with strong friction or damping if FF is a positive Borel function. Under suitable hypotheses, it is shown that u(t)=v(t)+w(t) u(t)=v(t)+ w(t) where vv satisfies 2F(S)dvdt(t)+S2v(t)=0 2F(S)\frac{dv}{dt}(t)+ S^2v(t)=0 and w(t)v(t)0,  as  t+. \frac{w(t)}{\|v(t)\|} \rightarrow 0, \; \text{as} \; t \rightarrow +\infty. The required initial condition v(0)v(0) is given in a canonical way in terms of u(0)u(0), u(0)u'(0)

    Similar works