research

Tradeoffs for reliable quantum information storage in surface codes and color codes

Abstract

The family of hyperbolic surface codes is one of the rare families of quantum LDPC codes with non-zero rate and unbounded minimum distance. First, we introduce a family of hyperbolic color codes. This produces a new family of quantum LDPC codes with non-zero rate and with minimum distance logarithmic in the blocklength. Second, we study the tradeoff between the length n, the number of encoded qubits k and the distance d of surface codes and color codes. We prove that kd^2 is upper bounded by C(log k)^2n, where C is a constant that depends only on the row weight of the parity-check matrix. Our results prove that the best asymptotic minimum distance of LDPC surface codes and color codes with non-zero rate is logarithmic in the length.Comment: 10 page

    Similar works