research

Strong convergence for the modified Mann's iteration of λ\lambda-strict pseudocontraction

Abstract

In this paper, for an λ\lambda-strict pseudocontraction TT, we prove strong convergence of the modified Mann's iteration defined by xn+1=βnu+γnxn+(1βnγn)[αnTxn+(1αn)xn],x_{n+1}=\beta_{n}u+\gamma_nx_n+(1-\beta_{n}-\gamma_n)[\alpha_{n}Tx_n+(1-\alpha_{n})x_n], where {αn}\{\alpha_{n}\}, {βn} \{\beta_{n}\} and {γn}\{\gamma_n\} in (0,1)(0,1) satisfy: (i) 0αnλK20 \leq \alpha_{n}\leq \frac{\lambda}{K^2} with lim infnαn(λK2αn)>0\liminf\limits_{n\to\infty}\alpha_n(\lambda-K^2\alpha_n)> 0; (ii) limnβn=0\lim\limits_{n\to\infty}\beta_n= 0 and n=1βn=\sum\limits_{n=1}^\infty\beta_n=\infty; (iii) lim supnγn<1\limsup\limits_{n\to\infty}\gamma_n<1.Our results unify and improve some existing results.Comment: 8 pages, 201

    Similar works

    Full text

    thumbnail-image

    Available Versions