research

Analysis of the decay constants of the heavy pseudoscalar mesons with QCD sum rules

Abstract

In this article, we recalculate the contributions of all vacuum condensates up to dimension-6, in particular the one-loop corrections to the quark condensates αs\alpha_s and partial one-loop corrections to the four-quark condensates \alpha_s^2^2, in the operator product expansion. Then we study the masses and decay constants of the heavy pseudoscalar mesons DD, DsD_s, BB and BsB_s using the QCD sum rules with two choices: {\bf I} we choose the MSˉ\bar{MS} masses by setting m=m(μ)m=m(\mu) and take perturbative corrections up to the order O(αs)\mathcal{O}(\alpha_s); {\bf II} we choose the pole masses mm, take perturbative corrections up to the order O(αs2)\mathcal{O}(\alpha_s^2) and set the energy-scale to be the heavy quark pole mass μ=mQ\mu=m_Q. In the case of {\bf I}, the predictions fD=(208±11)MeVf_D=(208\pm11)\,\rm{MeV} and fB=(189±15)MeVf_B=(189\pm15)\,\rm{MeV} are consistent with the experimental data within uncertainties, while the prediction fDs=(241±12)MeVf_{D_s}=(241\pm12)\,\rm{MeV} is below the lower bound of the experimental data fDs=(260.0±5.4)MeVf_{D_s}=(260.0\pm5.4)\,\rm{MeV}. In the case of {\bf II}, the predictions fD=(211±14)MeVf_D=(211\pm14)\,\rm{MeV}, fB=(190±17)MeVf_B=(190\pm17)\,\rm{MeV}, fDs=(258±13)MeVf_{D_s}=(258\pm13)\,\rm{MeV} and fDs/fD=1.22±0.08f_{D_s}/f_D=1.22\pm0.08 are all in excellent agreements with the experimental data within uncertainties.Comment: 16 pages, 21 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions